New low-energy direct measurement of the $^{18}\text{F}(p,\alpha)^{15}\text{O}$ reaction*

N. de Séreville1, C. Angulo2, A. Coc2, N.L. Achouri3, E. Casarejos1, T. Davinson4, P. Figuera5, S. Fox6, F. Hammache7, J. Kiener2, A. Laird6, A. Lefebvre2, P. Leleux1, P. Mumby-Croft6, N. Orr3, D. Robertson4, K. Vaughan6, V. Tatischeff2

1CRC and FYNU, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
2CSNSM Orsay, IN2P3-CNRS, Bâtiment 104, F-91405 Orsay Cedex, France
3LPC, ISMRA and Université de Caen, IN2P3-CNRS, 14050 Caen Cedex, France.
4School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, UK
5Laboratori Nazionali del Sud, INFN, I-95123 Catania, Italy
6Department of Physics, University of York, Heslington, York YO10 5DD, UK
7IPN Orsay, F-91406 Orsay Cedex, France

The ^{18}F, produced during nova explosions, is the main responsible for the 511 keV γ-ray emitted during the outburst that could be detected with satellite missions or future γ-ray telescopes [1]. In spite of many experimental efforts [2], the amount of ^{18}F synthesised still suffers from large uncertainties concerning, mainly, the $^{18}\text{F}(p,\alpha)^{15}\text{O}$ reaction.

We report here on a new direct measurement of the $^{18}\text{F}(p,\alpha)^{15}\text{O}$ cross section recently carried out at the RIB facility at Louvain-la-Neuve. Cross section data down to a centre-of-mass energy of 400 keV have been obtained using an isobarically pure ^{18}F beam (averaged intensity of the order of 10^6 pps) and a thin polyethylene target. The reaction products were detected using the multi-strip detector array LEDA [3].

The cross section data are analysed in the framework of the R-matrix model [4]. Our main aim is to determine the interference sign between three $3/2^+$ resonances above threshold that can significantly affect the extrapolation of the $^{18}\text{F}(p,\alpha)^{15}\text{O}$ cross section to the energies relevant for novae, and thus, the modeling of the nova explosions.

* This work is supported by the Belgian IAP program P5/07 on inter-university attraction poles of the Belgian-State Federal Services for Scientific, Technical and Cultural Affairs and by the European Commission within the Sixth Framework Programme through I3-EURONS (contract no. RII3-CT-2004-506065).