Near-barrier fusion and breakup of weakly bound and exotic halo nuclei

C. Beck¹, A. Sánchez i Zafra¹, A. Diaz-Torres², I.J. Thompson³, N. Keeley⁴

¹ Institut Pluridisciplinaire Hubert Curien, UMR7178, CNRS-IN2P3 et Université Louis Pasteur Strasbourg, B.P. 28, F-67037 Strasbourg Cedex 2, France
² The Australian National University, Canberra ACT 0200, Australia
³ Department of Physics, University of Surrey, Guildford GU2 7XH, U.K.
⁴ DAPNIA/SPbN Saclay, F-91190 Gif-sur-Yvette, France

In reactions with weakly bound nuclei, the influence on the fusion process of coupling both to collective degrees of freedom and to break-up/transfer channels is a key point for the understanding of N-body systems in quantum dynamics [1,2]. Due to the very weak binding energies of halo nuclei, such as 6He, a diffuse cloud of neutrons of halo nuclei would lead higher fusion cross sections at sub-barrier energies as compared to predictions of one-dimensional barrier penetration model [1]. This was understood in terms of the dynamical processes arising from strong couplings to collective inelastic excitations of the target and projectile [3]. However, in the case of reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become a competitive process, conflicting model predictions and experimental results were reported [1,2,4]. Recent experimental results with $^6,^8$He beams show that the halo of 6He does not enhance the fusion probability, confirming the prominent role of one- and two-neutron transfers in 6He induced fusion reactions [1,2]. The effect of non-conventional transfer/stripping processes appears to be less significant for stable weakly bound projectiles [4].

Several experiments involving tightly bound projectiles such as 9Be, 7Li, and 6Li projectiles on targets ranging from 12C to 209Bi have been investigated [2]. In this talk, excitation functions for sub- and near-barrier total (complete + incomplete) fusion cross sections measured using γ-ray techniques for the $^6,^7$Li+59Co reactions [3,4] are presented. The comparison with Continuum-Discretized Coupled-Channel (CDCC) calculations [5] indicates only a small enhancement of total fusion for the more weakly bound 6Li below the Coulomb barrier, with similar cross sections for both reactions at and above the barrier. This result is consistent with rather low breakup cross sections measured for the 6Li+59Co reaction even at incident energies larger than the Coulomb barrier [4].

The investigation of the breakup process in the $^6,^7$Li + 59Co,115In reactions with particle techniques is also presented to discuss the interplay of fusion and breakup processes including the role of elastic scattering [4]. Coincidence data compared to three-body kinematics calculations reveal a way how to disentangle the contributions of breakup, incomplete fusion and/or transfer-reemission process.

As far as exotic halo projectiles are concerned we have initiated a systematic study of 4,6He induced fusion reactions [4] with an improved three-body CDCC method [5] using a dineutron model for 6He ($\alpha-2n$). Some of the preliminary results will be presented. However a full understanding of the reaction dynamics involving couplings to the breakup and neutron-transfer channels will need high-intensity radioactive ion beams and precise measurements of elastic scattering and yields leading to the breakup itself. The application of four-body (required for an accurate α-n-n description of 6He) CDCC models under current development [6,7] will then be highly desirable.