Spectroscopy of neutron-deficient nuclei around ³⁶Ca

<u>A. Bürger^{1,5}</u>, F. Azaiez², M. Stanoiu³, Zs. Dombrádi⁴, A. Algora⁴, A. Al-Khatib¹, B. Bastin⁶, G. Benzoni⁷, R. Borcea⁸, C. Bourgeois², P. Bringel¹, E. Clément⁵, J.-C. Dalouzy⁹, Z. Dlouhý¹⁰, A. Drouart⁵, C. Engelhardt¹, S. Franchoo², Zs. Fülöp⁴, A. Görgen⁵, S. Grévy⁹, H. Hübel¹, F. Ibrahim², W. Korten⁵, J. Mrázek¹⁰, A. Navin⁹, C. Timis¹¹, F. Rotaru⁸, P. Roussel-Chomaz⁹,

M.-G. Saint-Laurent⁹, G. Sletten¹², D. Sohler⁴, O. Sorlin⁹, Ch. Theisen⁵, D. Verney² and S. Williams¹¹

¹ Helmholtz-Institut für Strahlen- und Kernphysik, Univ. Bonn, Germany
 ² Institut de Physique Nucléaire, IN2P3-CNRS, Orsay, France

 ³ GSI, Darmstadt, Germany
 ⁴ Institute of Nuclear Research, Debrecen, Hungary
 ⁵ DAPNIA/SPhN, CEA Saclay, France
 ⁶ Laboratoire de Physique Corpusculaire, Caen, France
 ⁶ IFIN-HH, Bucharest-Magurele, Romania
 ⁹ GANIL, Caen, France
 ¹⁰ Nuclear Physics Institute, Řež, Czech Republic
 ¹¹ Department of Physics, University of Surrey, UK
 ¹² Niels Bohr Institute, University of Copenhagen, Denmark

An experiment was performed to find excited states in proton-rich Ca isotopes, and to search for the position of the proton drip-line at Z=20. In particular, the first excited state in ³⁶Ca was searched for in order to obtain information on the isospin dependence of the nucleon-nucleon interaction near the drip line from a comparison with its stable T = 2 mirror nucleus ³⁶S. Secondary beams of ³⁷Ca and ³⁶Ca were produced by fragmentation of a primary ⁴⁰Ca beam with an energy of 95 · A MeV on a 270 mg/cm² C target in SISSI at GANIL. A variety of nuclei around ^{36,35}Ca was produced in a second fragmentation step by n- and p-removal in a secondary Be target at energies around $61 \cdot A$ MeV. The produced nuclei were identified using the spectrometer SPEG, and energies of prompt gamma rays were measured with the *Château de Cristal*. For ³⁶Ca, the energy of the first 2+ state has been determined as

Figure 1: Mirror energy differences for T = 1 (circles) and T = 2 (squares) pairs. The values for ³⁶Ca (A = 36) and ²⁸S (A = 28) are shown with larger squares.

well as partial and total one-nucleon removal cross sections and momentum distributions. In addition, previously unknown transitions in other nuclei have been observed. Among them is the first excited state in ²⁸S, the mirror nucleus of ²⁸Mg, so that energy differences could be calculated for two pairs of T = 2 mirrors. This completes the systematics of T = 2 mirror energy differences, shown along with those for T = 1 in fig. 1, from A = 16 to up to A = 36.