Charged-particle channels in the β-decay of ^{11}Li

R. Raabe1, A. Andreyev2, L. Buchmann2, P. Capel2, H. Fynbo5, M. Huyse1,2, R. Kanungo2, T. Kirchner2, C. Mattoon4, A. C. Morton2, I. Mukha1, J. Pearson2, J. Ponsaers1, J. J. Ressler2,3, K. Riisager5, C. Ruiz2,3, P. G. Ruprecht2, F. Sarazin4, P. Van Duppen1, P. Walden2

1 Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Celestijnenlaan 200D, B-3001 Leuven
2 TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
3 Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, B.C. Canada V5A-1S6
4 Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
5 Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark

The ground state of the ^{11}Li nucleus is one of the best examples of a two-neutron halo state. Among the various probes that have been used for the investigation of its properties, the β-decay has the advantage of being a well-understood process. The Q-value of the β decay of ^{11}Li is large, therefore most of the open channels are characterized by the emission of charged particles. We investigated these channels, with particular attention to the deuteron emission $^{11}\text{Li} \to ^9\text{Li} + \text{d}$ and triton emission $^{11}\text{Li} \to ^8\text{Li} + \text{t}$. The deuteron channel is especially of interest, since its branching ratio and the deuteron spectrum give direct information about the two-neutron halo wave function of the mother state. This decay mode has been identified in the past, but has not been disentangled from the triton channel [1].

We refined a calorimetric technique for the detection of β-delayed charged particles [2], by implantation of the nuclei of interest directly in a finely segmented silicon detector. To achieve the required implantation depth, a pure beam of the extremely neutron-rich ^{11}Li nuclei was produced and post-accelerated for the first time at the ISAC facility in TRIUMF. The energy of the beam was the highest provided by ISAC (1.5 MeV/nucleon). The beam intensity was kept deliberately low in order to avoid the overlap of two implantation signals before the decay of the ^{11}Li nucleus and its daughters took place. Given the high segmentation of the detector (~ 2300 pixels on 16×16 mm2) and the long half-life of some daughters (for ^{11}Be it is $T_{1/2} = 13.81$ s), an implantation rate of a few hundred particles per second was used to preserve the time correlation between decays. The method also provides a strong suppression of the β background and a very accurate normalization.

We identified the channels of interest via the daughter-decays of ^9Li and ^8Li. The α particles emitted in the two cases can be separated based on their half-life and energy spectra (shown in Fig. 1). To help with the identification, beams of ^9Li and ^8Li were also employed to measure the spectra directly. The correlation with the parent decay was used to obtain the deuteron and triton spectra from ^{11}Li shown in Fig. 2. We will discuss the implications of these results for the halo structure of the ground state of ^{11}Li.

![Figure 1](energy_spectrum.png)

Figure 1: Energy spectrum of the particles emitted in daughter-decays, following the implantation and decay of ^{11}Li, after background subtraction. The two curves are the spectra of ^8Li (dashed line) and ^9Li (dotted line) measured directly and scaled to fit the data.

![Figure 2](energy_spectrum2.png)

Figure 2: (PRELIMINARY) Energy spectra from the decay of ^{11}Li: circles are tritons from $^8\text{Li} + \text{t}$, stars are deuterons from $^9\text{Li} + \text{d}$.