Beta-decay of proton-rich nucleus 23Al and astrophysical consequences

L. Trache, V.E. Iacob, Y. Zhai, T. Al-Abdullah, C. Fu, J. C. Hardy, N. Nica, H.I. Park, G. Tabacaru and R.E. Tribble

1 Cyclotron Institute, Texas A&M University, College Station, TX 77843, USA

The results of a beta-decay study motivated by a nuclear astrophysics problem are presented. For the first time pure samples of 23Al were separated with the MARS separator of Texas A&M University. Off-beam beta and beta-gamma coincidence measurements were made using a fast tape-transport system, beta and gamma-ray detectors. The experiment allowed us to measure beta branching ratios and log ft values for transitions to 14 final states in 23Mg and from them to determine unambiguously the spin and parity of 23Al ground state as $J^{\pi}=5/2^+$ (see figure). We discuss how this excludes the large increases in the radiative proton capture cross section for the reaction 22Mg(p,γ)23Al at astrophysical energies which were implied by claims that the spin and parity is $J^{\pi}=1/2^+$ [1]. The lifetime of 23Al was measured with better accuracy and the log ft for the Fermi transition to its isobaric analog state in 23Mg is also determined for the first time. A doublet consisting of the IAS and a state 16 keV below it (figure) are observed for the first time well separated in the same experiment, and we solve a number of inconsistencies existing in the literature, excluding strong isospin mixing and allowing a new determination of their resonance strength. Both states are resonances in the 22Na(p,γ)23Mg reaction at energies important in novae. The radiative proton capture on 22Na and 22Mg are considered candidates to explain the absence in spectra taken with space-based gamma-ray telescopes of gamma-rays from the decay of long-lived 22Na formed in ONe novae explosions [3,4]. These captures would divert some of the flux from the $A=22$ into the $A=23$ mass chain.

Figure 1: Partial decay scheme of 23Al. Only levels with relevance for the nuclear astrophysics problems are shown.