Coulomb excitation of neutron-rich ^{138,140,142}Xe at REX-ISOLDE * <u>Th. Kröll</u>¹, T. Behrens¹, R. Krücken¹, R. Gernhäuser¹, P. Maierbeck¹, V. Bildstein¹ for the REX-ISOLDE and MINIBALL collaborations ¹ Physik-Department E12, TU München, 85748 Garching, Germany Recent experiments in the surrounding of the doubly magic 132 Sn have shown that for very neutron-rich nuclei far off the valley of stability the $B(E2;0^+_{\rm gs}\to 2^+_1)$ values are lower than expected from systematics [1,2]. Proposed explanation is a reduced neutron-pairing above N=82 resulting in a large neutron contribution to the wave functions [3]. Aim of our research programme performed at the REX-ISOLDE facility at CERN is to extend such studies in this region in order to clarify the underlying physics. In our first campaign we investigated the neutron-rich isotopes 122,124 Cd. Our preliminary B(E2) values for these isotopes are consistent with expectations for vibrational nuclei [4]. Above the N=82 closure, we studied in a subsequent experiment the isotopes 138,140,142 Xe. We employed γ -spectroscopy following "safe" Coulomb excitation of radioactive Xe beams at an energy of 2.84 MeV/u impinging on a 96 Mo target. The γ -rays from deexciting the nuclei were detected by the highly efficient MINIBALL spectrometer consisting of 8 triple clusters of six-fold segmented HPGe detectors. The reaction kinematics was determined by detecting the scattered particles in a double-sided segmented Si detector (DSSSD). For all three isotopes, we collected high statistics for the $2^+ \to 0^+$ transitions. Additionally, also the excitation of the first 4^+ state has been observed. The B(E2) values of 138,142 Xe will be determined for the first time, whereas for 140 Xe the contradiction between the two different values existing in literature will be resolved. We will present the status of our analysis and discuss the perspectives for future experiments. - [1] D. C. Radford et al., Phys. Rev. Lett. 88, 222501 (2002). - [2] D. C. Radford et al., Proceedings of conference ENAM'04, Eur. Phys. J. A 25, s01, 383 (2005). - [3] J. Terasaki et al., Phys. Rev. C 66, 054313 (2002). - [4] Th. Kröll et al., Proceedings of conference ENS'05, AIP Conf. Proc. Vol. 802, 283 (2005). ^{*} This work is supported by the German BMBF under grant No. 06MT190.