First high-precision Penning trap mass measurements of short-lived isotopes from fast-beam fragmentation

National Superconducting Cyclotron Laboratory
Michigan State University, East Lansing, M 48824, USA

The Low-Energy Beam and Ion Trap facility LEBIT at the NSCL at MSU was used for the first time to demonstrate that rare isotopes produced by fast-beam fragmentation can be slowed down and prepared for precision mass measurements. The system employs a high-pressure gas-stopping concept [1] combined with advanced ion manipulation techniques. The first Penning trap mass measurements on short-lived rare isotopes have been performed with a 9.4 Tesla Penning trap mass spectrometer. Example nuclides are 66As, with a half-life of only 96 ms, and 38Ca, for which a mass accuracy of 8 ppb (280 eV) has been achieved [1]. 38Ca is a particular interesting case as it is super-allowed Fermi-emitter and the high accuracy of its new mass value makes it a new candidate for the test of the Conserved Vector Current hypothesis. In addition, other measurements using LEBIT have drastically improved the mass values for 37Ca, 40,42S, 67As and 65Ge and the capability to resolve isomers was demonstrated by the observation of $^{81\text{m}+g}$Se. The LEBIT system and its first results will be presented. Future plans for laser spectroscopy experiments with thermalized beams from fast beam fragmentation will be briefly addressed.

Figure 1: Schematic of LEBIT at NSCL/MSU (left) and cyclotron resonance curve obtained for 38Ca ($T_{1/2}=440$ ms) (right).