In the translead region 216Fr is known as the lightest isotope to have a band structure with interleaved states of alternating parities connected by enhanced B(E1) transitions [1]. Its bandhead is believed to be a 9^- isomeric state. While the existence of an alpha decaying isomers in odd-odd nuclei is common, a helium-jet based study performed by Sheline et al. [2] on the 224Pa $\rightarrow ^{220}$Ac $\rightarrow ^{216}$Fr $\rightarrow ^{212}$At alpha chain did not yield any information on the excitation energy of the postulated 9^- state nor on its half-life [2]. In this presentation we shall report on the attempts to search for the missing 9^- state in 216Fr with use of the Warsaw IGISOL system.

The 220Ac activity ($T_{1/2} = 26$ ms) was produced in the heavy-ion reaction 14N $+$ 209Bi, with target placed inside the helium gas cell of IGISOL system [3]. The cell with a volume of 400 cm3, for which the gas flow simulations were performed using FLUENT code [4], was off-line tested with an alpha-decay recoil source 223Ra [5]. In the on-line experiment an ion extraction efficiency of a gas catcher/ion guide system was optimized for the heavy-ion reaction product 213Rn ($T_{1/2} = 25$ ms) and the maximum efficiency of about 3% was determined. For the physics experiment four silicon alpha detectors were placed at the collection point of the IGISOL magnet. The digital electronics (DGF) was tested in the α-α-t correlations and pile-up modes with the 223Ra alpha source and the heavy-ion reaction product 220Ac (low spin alpha decay chain, see Fig. 1), respectively.

Details of the gas flow simulations, off-line and on-line tests of a gas catcher/ion guide system, digital electronics tests and the preliminary results of the physics experiment will be reported.

Figure 1: Time-correlated alpha spectrum obtained for 220Ac setting. Events collected within 1 s after registration of the 9004 keV alpha line from 216Fr $\rightarrow ^{212}$At decay.