Continuum effects: Structure and reactions of 6He

M. Rodríguez-Gallardo1,2,3, J. M. Arias1, J. Gómez-Camacho1, R. C. Johnson2, A. M. Moro1, I. J. Thompson2, and J. A. Tostevin2

1 Departamento de Física Atómica, Molecular y Nuclear, Facultad de Física, Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain
2 Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom.
3 Centro de Física Nuclear, Complexo Interdisciplinar, Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa, Portugal.

A description of the properties and reactions of weakly bound systems using the transformed harmonic oscillator (THO) method [1,2] is addressed. First, a study of a two-body problem in a central potential is presented focusing in the description of resonances [3]. Then, the THO method is generalized for a three-body problem. The convergence of different relevant structure observables is discussed for the Borromean nucleus 6He [4]. Finally, the THO method is applied to the study of 6He scattering within the CDCC reaction framework [5].

Figure 1: Elastic differential cross section relative to the Rutherford differential cross section as a function of the scattering angle in the projectile-target center of mass for the reaction 6He+208Pb. The red line corresponds to the full CDCC calculation and the broken blue line to the calculation including only the elastic channel. Both calculations are compared with the Louvain-la-Neuve data represented by yellow circles.