A new look at the β-decay of 11Li

1 Department of Physics, Colorado School of Mines, Golden CO, US 80401
2 Department of Physics, University of Guelph, Guelph ON, Canada N1G 2W1
3 TRIUMF, 4004 Wesbrook Mall, Vancouver BC, Canada V6T 2A3
4 Department of Physics and Astronomy, St Mary’s University, Halifax NS, Canada B3H 3C3
5 Department of Chemistry, Simon Fraser University, Burnaby BC, Canada V5A 1S6
6 Department of Physics, University of Surrey, Guildford, Surrey, United Kingdom GU2 7XH
7 Department of Physics, Simon Fraser University, Burnaby BC, Canada V5A 1S6
8 Department of Nuclear Physics, University of Vienna, Vienna, Austria 1090

The β-decay of halo nucleus 11Li was investigated at ISAC-TRIUMF with the 8π spectrometer, an array of 20 Compton-suppressed high-purity Germanium detectors. In August 2002, a beam of about a thousand 11Li atoms per second was delivered and implanted at the center of the 8π. The gamma spectrum resulting from the β-decay of 11Li shows remarkable features, namely Doppler-broadened line shapes arising from the decay of the excited states of 10Be, populated by β-delayed one-neutron emission. A Monte-Carlo simulation was developed to analyze these complex line shapes, from which it was possible to extract the lifetime of these excited states in 10Be and some information about the neutron emitting states in 11Be [1]. Following the development of a more intense 11Li beam at ISAC, the experiment was repeated recently with an enhanced experimental setup, comprising the 8π and Sceptar, a plastic scintillator array located in the inner volume of the 8π. The higher 11Li yield and the capability of taking data in β-γ coincidences lead to higher quality line shapes, as seen in the figure below. Results from this new experiment will be presented.

Figure 1: Line shape of the \sim5958keV transition as observed in the recent experiment compared to the first one (inset). The overall line shape quality is improved both by the higher statistics obtained and by the removal of transitions uncorrelated with the beam implantation using β-γ coincidences.