Scattering process of ¹¹Be from ²⁰⁹Bi at Coulomb barrier energies

M. Mazzocco¹, C. Signorini², M. Romoli³, R. Bonetti⁴, A. De Francesco³, A. De Rosa³, M. Di Pietro³,

T. Glodariu^{2,5}, A. Guglielmetti⁴, G. Inglima³, T. Ishikawa⁶, H. Ishiyama⁶, R. Kanungo⁷, N. Khai⁷,

S. Jeong⁶, M. La Commara³, B. Martin³, H. Miyatake⁶, T. Motobayashi⁷, T. Nomura⁶,

D. Pierroutsakou³, M. Sandoli³, F. Soramel⁸, L. Stroe⁵, I. Sugai⁶, M. H. Tanaka⁶, E. Vardaci³,

Y. Watanabe⁶, A. Yoshida⁷, K. Yoshida⁷

¹ Gesellschaft für Schwerionenforschung (GSI), D-64291 Darmstadt, Germany

² University of Padova and INFN, I-35131 Padova, Italy

³ University of Napoli and INFN, I-80126 Napoli, Italy

⁴ University of Milano and INFN, I-20133 Milano, Italy

⁵ INFN Laboratori Nazionali di Legnaro, I-35020 Legnaro (PD), Italy

⁶ Institute of Particle and Nuclear Studies (KEK), 205-0801 Tsukuba-shi, Japan

⁷ The Institute of Physical and Chemical Research (RIKEN), 351-0198 Wako-shi, Japan

⁸ University of Udine and INFN, I-33100, Udine, Italy

In our experiment we studied the scattering process of ¹¹Be from ²⁰⁹Bi. The ¹¹Be secondary beam $(S_n = 0.504 \text{ MeV})$ was obtained via fragmentation of a high energy ¹³C primary beam impinging on a thick Be target at 100 A·MeV. The reaction products were separated with the RIPS facility at RIKEN and heavy reduced in energy by means of an aluminum degrader. The outcoming ¹¹Be beam had a Lorentzian shape centered at 43 MeV with a FWHM of 15 MeV, an overall intensity of 10⁵ pps and a beam size at the target position of 27 mm (x axis) × 19 mm (y axis). The measurement of the scattering process with such a poor emittance and low intensity secondary beam was possible by tracking the incident beam with position sensitive detectors and by detecting the scattered particles with the high granularity EXODET array [1], which subtends ~ 2π sr and allows for a position resolution of ~ 1°.

The scattering angular distributions were evaluated for 2-MeV energy bins in the energy range between 40 and 48 MeV and they turned out to be rather similar to those obtained for ⁹Be ($S_n = 1.554$ MeV) nuclei interacting with a ²⁰⁹Bi target. This similarity, also observed for the fusion cross sections of both systems [2], suggests moderate effects due to the low binding energy on the reaction dynamics at Coulomb barrier energies. A further comparison shows that for system ¹¹Be + ²⁰⁹Bi the reaction cross section is much larger than the fusion one. Since in this energy range a few processes (namely fusion, inelastic excitations, breakup processes) are expected to exhaust the whole reaction cross section, this discrepancy could by solved by a strong breakup channel ¹¹Be \rightarrow ¹⁰Be + n. The deduced reaction cross section were also compared with those obtained for other weakly bound projectiles (⁹Be, ^{6,8}Li and ⁶He) interacting with high-Z target (²⁰⁸Pb and ²⁰⁹Bi), see Fig. 1. Among all of them, ⁶He exhibits the highest "reactivity" at Coulomb barrier energies, even if its binding energy ($S_{2n} = 0.972$ MeV) is larger than for ¹¹Be. Theoretical analyses are going on to investigate the origin of this unexpected behavior.

Figure 1: Reaction cross sections for five similar mass systems at Coulomb barrier energies. Data are been divided by R^2 , with R sum of the projectile and target radii, and plotted vs. E_{cm}/V_C . [1] M. Romoli et al., IEEE Transaction on Nuclear Science 52, 1860 (2005) [2] C. Signorini et al., Nucl. Phys. A 735, 329 (2004)